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Abstnct. Dynamical arguments are presented which suggest that there are non-integrable 
Systems without clustering of singularities, without infinite singularities, or singularities 
with an infinite number of branches in the complex t-plane. Several examples with only 
algebraic singularities are studied, for which strong numerical evidence is presented far 
non-integrability and infinitely sheeted solutions. 'Weak-PainlevC' potentials are also ana- 
lysed from this point of view, and all integrable cases are found to possess only finitely 
sheeted solutions. 

1. Introduction 

It has been widely suggested, on the basis of apparently overwhelming evidence, that 
infinite branching and clustering of singularities of the configuration coordinates in 
the complex I-plane is a 'universal' feature of non-integrable dynamical systems [l-71. 
Although some isolated examples of non-integrable systems with finite branching [6] 
and absence of clustering [7,8] have been reported in the literature, a more comprehen- 
sive analysis and deeper understanding of such systems has been lacking. 

In this paper, we first present physical arguments suggesting that there is a large 
class of non-integrable Hamiltonian systems with only algebraic singularities in complex 
time. We then proceed to study the analytic structure of several of these examples in 
the 1-plane and present evidence of their infinitely sheeted solutions (ISS). Furthermore, 
we show how finite-sheetedness and ISS can be used to distinguish between integrable 
and non-integrable systems whose solutions contain only rational powers of 1, when 
expanded about a singularity at f = I,. 

The Hamiltonian systems studied in this paper have the standard form 

H (x. Y,  A ,  pV ) = f ( P: + P: ) + V ( x .  Y )  (1.1) 

which describes a particle of unit mass moving in a two-dimensional potential V. In 
particular, we shall investigate here the following examples: 

(1.2) 
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with 

f ( x , y ) =  (x2+y2-1)2 1 
(1.3a) 

(1.36) 

( 1 . 3 ~ )  

where (1.2) with (1.3a) belongs to a class of Calogero-Moser potentials [9], (1.36) 
corresponds to a problem of ’soft billiards’ [lo] and ( 1 . 3 ~ )  gives a smooth potential 
(1.2) for all real (x,y).  

(ii) V (  x, y) = $x4+3x2y2+y4+ Ax (1.4) 

first studied by Grammaticos et a1 [ l l ] ,  which is integrable for A = O  and has only 
algebraic singularities for A # 0. 

We demonstrate analytically that the above potentials have only square root sin- 
gularities in the solutions (x(f), y ( t ) ) ,  for complex 1, and present strong numerical 
evidence for their non-integrability and the existence of ISS in every case. The analytic 
structure of these potentials is subsequently compared with that of the weak-Painlevi 
examples [ 6 ]  

(l .5a) 

(1.56) 

which are known to be completely integrable and possess only rational powers o f f  in 
the expansions of their solutions around a singularity. 

In section 2 we address the issues of infinite branching and clustering of singularities 
and present dynamical arguments, which cast doubt on earlier interpretations of the 
significance of these issues. Furthermore, we suggest that there is a large class of 
non-integrable systems with no more than algebraic singularities in the complex f-plane. 

Section 3 examines one example which is a perturbation of an important class of 
integrable systems with only square root singularities: a two-particle Calogero-Moser 
potential with quadratic terms. We give the explicit solution in the integrable ( A =  E )  
case and integrate the equations of motion numerically in the complex I-plane, for 
A # B, to show that they have ISS around contours enclosing two pairs of complex 
conjugate singularities. Then in section 4 we study the solutions of (1.2) with (1.36) 
and other related potentials with only square root singularities and find similar evidence 
of ISS for A f B, in every case. 

In section 5, we turn to potential (1.4), whose square root singularities are infinite 
(i.e. occur at finite t = f, at which (x, y )  becomes infinite). Here also, in the non- 
integrable case A # 0, the branches of these singularities appear to be connected in 
such a way that ISS is observed in the same way, integrating around suitably large 
contours in the complex 1-plane. 

It is interesting to compare these results with the ones obtained in section 6, where 
we have analysed, from the same point of view, two completely integrable systems 
with algebraic singularities: the weak-Painlev6 potentials (l.Sa, b )  for which we find 
finitely sheeted solutions in every case. 

Finally, our conclusions are presented in section 7, with a more detailed discussion 
of our numerical and analytical results given in appendices 1 and 2 respectively. 
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2. Dynamical interpretation of singularities 

Many properties of dynamical systems in the complex 1-plane can be discussed in 
dynamical terms, just as if 1 were real, though some minor modifications are needed. 

Suppose r ( t )  = ( ~ ( l ) ,  y (  I ) )  is a complex analytic solution of the equations of motion 
for the configuration variables x, y of the Hamiltonian system (1.1). If the particle 
reaches an infinite value of r in finite real time, then V ( r )  must diverge faster than a 
quadratic for large r. The same is true for complex time. The difference between real 
and complex I is that for real I, V ( r )  must be negative, whereas for complex f there 
is no constraint on the sign of V ( r ) .  

We shall call a singularity of r ( f ) ,  at t = r * ,  an infinite singularity, if r(1) is 
unbounded in the neighbourhood o f t  = I * .  Otherwise it will be called a finite singularity. 
Now we may use the form of V ( r )  to study the dynamical properties of the motion 
in the following way. 

If the singularity at I = r* is infinite and I* is finite, this means that the particle 
reaches an infinite value of r in finite complex time. Thus, the occurrence of infinite 
singularities is connected with the properties of V and the dynamics of the system in 
the limit of large r. 

Now suppose that there are two infinite singularities in r ( t ) $  one at 1 = I ,  and one 
at 1 = Ib,  on the same sheet of the complex plane. This means, dynamically, that the 
particle can go from infinity to infinity in a finite complex time interval of magnitude 
11,- t,l. Furthermore, if infinite singularities cluster, the particle can go from infinity 
to infinity in arbitrarily short times. 

Why should the integrability of a system depend on some special property of the 
dynamics at infinity? A little thought shows that this commonly encountered consider- 
ation of singularities a t  infinity is due to the usual choice of potentials V ( r ) ,  which 
are analytic for all finite values of r. For such potentials, all singularities in the complex 
1-plane must be infinite. Hence, the motion of a non-integrable system which is free 
from such singularities cannot be governed by a potential V ( r ) ,  which is an entire 
complex function of r. It must therefore have a V ( r )  which possesses singularities at 
finite r. 

Now consider a singularity at 1 = I * ,  for which the value r* = r (  I * )  is finite. Since 
r ( t )  is analytic in the neighbourhood of values of r for which V ( r )  is analytic, it 
follows that V ( r )  must be singular at r = r * .  Thus, this type of singularity in r ( t )  
depends on the type of singularity in V ( r ) .  

For non-integrable systems, Ziglin’s theorem [6, 121 tells us that there must exist 
solutions with an infinite number of sheets. These sheets are, of course, joined at the 
singularities. It is an open question, however, as to how this property of ISS manifests 
itself in systems whose singularities are all finitely branched. 

We will start by examining non-integrable Hamiltonian systems (1.1) with the 
following properties: 

(i) V ( r )  must diverge at infinity no faster than a quadratic in x and y; 
(ii) the potential V ( r )  must be singular for, at least, one finite value of r, not 

(iii) at least one of the singularities in the potential must produce a branch cut in 

The simplest singularity with a branch cut is the square root singularity. For motion 
in one dimension a square root singularity in x (  I )  at x = x* is produced by the inverse 
square potential - k / ( x - x , ) 2 .  Thus, for simplicity, we shall first seek non-integrable 
dynamical systems with the additional property: 

necessarily real; 

4 1 ) .  
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(iv) the potential V ( r )  has only singularities at ( x , y )  where the term with the 
inverse square off(x, y )  in (1.2) diverges. 

3. Singularity analysis of a CalogereMoser system 

There is a large class of Hamiltonian systems of many degrees of freedom with all the 
properties (i)-(iv) listed above, which are known as Calogero-Moser systems 191. In 
the case of two degrees of freedom the potential V ( x ,  y )  of an example of such a 
Hamiltonian system has the form 

and is completely integrable only in the symmetric case A = B. The equations of motion 
are 

Note that, for A = B, (3.2) uncouple under the transformation 

z = x - y  w = x + y  (3.3) 
into 

4k 
2 

and hence possess the additional integral 

i= -Az+-  (3.4) w -Aw 

which is in involution with the Hamiltonian. 

the integral (3.5), and derive 
It is not difficult to integrate the second equation in (3.4) explicitly, starting with 

z2 = 6 [ F +  ( :-4k)”2 s i n l 2 a  ( t - I,,)]] (3.6) 

where I, is a second arbitrary constant. This confirms analytically that, in the case 
A = B, our solutions (3.3) possess exactly two Riemann sheets corresponding to the f 
choice in taking the square root of (3.6). 

The /oca[ two-sheetedness of solutions can also be revealed, by direct singularity 
analysis, even when analytical solutions like (3.6) are not available. Thus, for general 
A and B, one can expand x ( f )  and y(f) near a (movable) singularity f = ?* of (3.2) 
and show that the only leading behaviour allowed is of the form 

x = a + c , r ” 2 + .  , . y = a + C 2 P +  ... r=t--l* (3.7) 

where a is a free constant and cl = -c2 = (-k)”4. The only type of singularity, therefore, 
in this problem occurs when the equations of motion themselves are singular, at 
x - y  =O. These singularities are, of course, finire. since the configuration variables 
x(t), y ( r )  are finite at t =  r* (it is the velocities x(r), y( f )  and their derivatives that 
blow up as r -P I * ) .  
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However, it is not yet clear from (3.7) alone that the above singularities are of the 
square root type. One needs to expand (3.7) to higher order to see whether singularities 
of the logarithmic type arise, where further arbitrary constants enter in (3.7) [6]. To 
find out whether this occurs, let us insert in (3.2) x, y in the form 

x = a + ~ , r ' / ~ +  d,T'+1/2 y = a + c ~ T ' / ~ +  d2Trf ' / '  ~ = f - r *  (3.8) 
and seek to determine the orders, r, at which the coefficients d, and/or d, are arbitrary. 
This takes place at r values, at which the determinant of M in the linear system 

(3.9) 

vanishes, i.e. where 

det M = ( r + l ) ( r -  l ) ( r 2 - $ )  = O .  (3.10) 

The root r = -1 is due to the arbitrary location of the singularity f = f, and r = -$  
corresponds to the free constant a in (3.7). (3.8). It remains to check whether at r = f ,  
1,  i.e. at terms of order T and r3I2 in (3.8), the RHS g of (3.9) is such that log r terms 
are required to satisfy the corresponding compatibility conditions. 

Note, however, that upon second differentiation, the r, r3I2 terms in (3.8) will enter 
on the LHS of (3.2) at orders lower than constant, which is the leading order of the 
linear terms -Ax, and -By on the RHS of (3.2). Thus, these linear terms (and hence 
the parameters A and E, be they equal or not) will nor alter the nature of the singularity, 
which is determined completely by the terms of lower order. These terms (at orders 
T-' and T - " ~ ) ,  yield g ,  = g,  = 0 in (3.9), and hence do  not introduce any logarithms, 
as the series solutions (3.8) of the problem finally become 

m 

x = n + ( - - k ) ~ ' / ~ + d ~ + f ~ ~ / ~ +  1 anrni2 
n = 4  

m 

y = a - (  - - k ) ~ ' / ~ + d r  - fr3I2+ b.r"', 
"-4  

(3.11) 

with r , ,  a, d and f providing the complete set of the free constants to be specified by 
the initial conditions of the problem. 

Now that the nature of the singularities of the Calogero-Moser system (3.1) has 
been determined, we proceed to investigate their location and arrangement in the 
complex r-plane. In the integrable case A = B this is easy. Since these singularities 
correspond to z = x - y  = 0, we can obtain them directly from (3.6): 

1 F r ,  = to--  [sin-'( 
2Jz( 

(3.12) 

where m is any integer and to,  F are determined by the initial conditions. This shows 
that the singularities of this system are located periodically along two rows parallel to 
the Re(f) axis intersecting the Im(r) axis at 1, =*Im(f,), as shown in figure 1 (for 
every singularity of x, y at f = f* ,  there is one of x, y at f = i,). 

Locally, of course, around any contour C,  enclosing one singularity, the solutions 
of the system return to their starting values after two turns. Integrating now along 
larger contours C,, C , ,  etc. (see figure 1). in the integrable case A= B. all solutions 
repeat after only one or two turns, depending on whether the number of singularities 
enclosed is even or odd. This is because in that case the general solution is available 
in closed form, cf (3.6), and has globally also a very simple sheet structure. 
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Figure 1. Locations of singularities on the primary Riemann sheet and several paths of 
integration around them, in the integrable case of Calogero-Moser system (3.1) with A = I ,  
B = l ,  E = 3 . 5 .  

The interesting question is: what happens when A # B? Integrating the equations 

with the Poincare surface of section x, x ( y  = 0, j 2 0), large-scale chaotic behaviour 
is observed, strongly indicating that the problem is non-integrable (see figure 2). How 
is this global propeny of the system reflected by the analytic structure of the solutions 
in the complex t-plane? 

Atheorem of S L Ziglin's [6, 121 assures us that non-integrable Hamiltonian systems 
must have ISS. Our objective, therefore, is to find out in what way do ISS occur in this 
problem, when A # B. Locally, of course, around a contour C, enclosing only one 
singularity, all solutions retain their two-sheeted structure, as indicated by their 
expansions (3.11). which are valid for sufficiently small T. 

The answer must lie, therefore, in the more global solutions, around contours 
enclosing more than one singularity in the complex t-plane. Indeed, when we integrated 

n C  -n+:n- (2 11 -.,-a-:,--ll., :- r h - +  anon -1nti:n- +he :-+a--a.-+:,.-- -F  tLl ..A.:+A 
vi 1I I"L.V.L \.'.&I L 1 " " . C 1 L b C u 1 ,  111 L I I ' Z L  *mac, YL." p " L L L L 1 6  L l l L  ~ I I I I ~ L I ~ C L I Y I I J  U1 LLlrj U L U I L J  

-5 I 1 .., , J 
0 1 2 3 4 5 

X 

Figure 2. Surface of section far Hamiltonian ( 1 . 1 )  with potential (3.1) in the case A =  I 
B=4, E = 2 0 .  
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(3.2) around contours C I ,  C,, etc. (see figure 1). new singularities started appearing 
on other sheets, causing the solutions to repeat after more and more turns N, as the 
‘height’ I of our rectangular contours kept increasing, as shown in figure 3. All our 

-0.45 1 ,  , I , ,  , , , , , , , , , , , , , , , , , , , , , , , , , , , , 
0 0.10 0.20 0.30 

-0.50 9 
-2.00 -1.00 0 1.00 2.00 3.00 4.00 

R e  ( t i  

Figure 3. Singularity patrerns in the complex I-plane of the Calogero-Mow system when 
one integrates around ( a )  contour C ,  of figure I (300 timer) lor A = l ,  B =  1.15, E =lo ,  
a n d ( b ) c o n l o u r C , a t A = l . B = l . l S ,  €=IO. 



3224 T Bountis et al 

integrations in the complex t-plane were carried out using the ATOMFT package 
developed by Chang and Corliss [13]. 

In this problem, taking A = I and varying E, we found that integrating around 
contours enclosing two singularities, the solutions always returned to their starting 
values, after a number of turns N that grows on the average linearly with I (see figure 
4(a) ) .  However, when we turned around contours enclosing four singularities (see 
figure 3(b)) the solutions did not exactly repeat but exhibited near returns to their 
starting values after a number of turns N that also appeared to increase linearly with 
I (see figure 4(b)). 

600 

500 

0- 
0- I 

0.22 0.24 0.26 0.28 0.3 0.32 0.31 0.36 0.38 0.37 0.3 0.39 0.10 O W  042 
Verticol path side length ( ( 1  

Figure 4. ( a )  Plot of the number of turns N needed to (exactly) return to the original 
Riemann sheet versus the length of the vertical side of contour C,, containing one pair of 
singularities, for the non-integrable Calogero-Moser system at A= 1,  B = 1.01, E = 21. ( b )  
Sameas(o)forcontourC,,containingtwopairsafsingularities,with A =  1, B = 2 ,  E = 3 . 5 .  

The absolute differences, after N turns, in the values of solutions from their initial 
conditions were observed to grow steadily as E was changed further away from unity 
(see also discussion in appendix 1). All this suggests that, in the non-integrable case, 
ISS are indeed observed around such contours, in a very similar way as has already 
been found for other potentials having only square root singularities (see [lo] and 
section 4 below). 

Thus, non-integrable dynamical systems with only algebraic singularities in t and 
ISS certainly do exist. Moreover, these singularities exhibit no clustering and are 
distributed on different sheets, as seen in figure 3 where only their projection on one 
sheet is shown. 

Vertical polh side length i l  I 

4. The soft billiard and other relsted potentials 

Let us now investigate, from the same point of view, the analytic structure of the 
solutions of (1.1) with V ( x , y )  given by (1.2). with (1.3b), i.e. 



Non-integrable systems 3225 

which is integrable for A = B by virtue of rotational symmetry. Just as in the Calogero- 
Moser system of section 3, this problem also has only square root singularities (created 
by the inverse square part of the potential) near which its solutions are of the form 

x = x* + a,r’/’+.  . . y = y,+ a 2 P 2 + .  , . T =  f -  t* (4.2) 

where T =  f - t, and x:+y: = 1. One can easily carry out the singularity analysis and 
check that, forA = E, the series expansions of the solutions (1.2), near such a singularity, 
contain four arbitrary constants and only pnwers of T’/’ to al! orders 

The analytical solution of the equations of motion 

2k j i - B y -  2k  
x=-Ax+ 

( X Z + y 2 -  113  (x2+y2-1)3 (4.3) 

in the A = B case can be derived in an implicit form after transforming to polar 
coordinates x = r cns 8, y = r sin 0 and intrndxcing the npw variah!e U = r’-! I 

(4.4) 
U du 

~ ~ ~ 2 E ( u + i ) u ’ - A ( u + l ) ’ u 2 - J 2 u ’ - 2 k ( u + l )  

where J = r2b = const is the angular momentum integral and E is the total energy. The 
integration in (4.4) can be camed out in terms of elliptic integrals of the first and third 

r, 0 (and hence x ,y )  as functions of f [14]. However,.as we discuss in appendix 2,  
closed-form solutions also exist in some special cases which can further illuminate the 
analytic structure of the integrable problem. 

There are, of course, many different kinds of perturbations of the A = B potential 
(4.1), which can remove the rotational symmetry and make the system non-integrable. 

as well as the finite nature of the singularities. 

instead the potential 

L:..A- I-.a --.-.--A:- 1\ ... h:-h :- la..a--l -..:.- -I:CC-..lr 1- : d :- --A-- 6-  er.4-Z- n iuva ~ a c v  aypnnum L,, w * ~ i i n i  ais LU  ssuciaa qurrr; UIIII~,UII LU M Y S I ~  111 uiuci IV uuLaiii 

!n doing so, however, clre must be !.ken to presene properties (i)-(k) nf sectio!! 3 

Thus, we chose first to perturb the denominator of (1.2) and (1.36) and consider 

(4.5) 

but this led to the appearance of logarifhmic terms in the expansion around finite 
singularities at points r * = ( x * , y * )  satisfying x : + b 2 y ; - 1 = 0 ,  as follows [lo]: 

X = x*+ a , ~ ’ / ’ +  b , T + [ c ,  + d ,  I o g ( r ) ] ~ ~ / ’ + .  ~, 

y = y ,  + a2‘r1/’+ b27+ [ cz+ d2 log( T)]T’/’+. . . 
and T = I - f t ,  where now oniy f, and cI are free constants. 

The logarithmic terms in (4.6) introduce infinite branching at the singularity t = f*, 
which we wish to avoid. So we were led to leave the denominator unchanged, and 
consider the potential (1.2) with (1.3b) and different A, B in general. These cannot 
have any logarithms in r (  t ) ,  since the contributions of Ax’, By’ in the series expansions 
enter after the last free parameter has already been determined. 

returns r ( t )  to its original value, confirming that it is a singularity (locally) of the 
square root type. But this local analytic structure is the same for all values of the 
parameters A, E !  So it is natural to ask how does the non-integrable case, with A #  B, 
differ from the rotationally symmetric A = B case. 

:ntegrating ihe equations Uf moiion i4.3) iwice one such siiiguiaiiiy i = ;* 
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To find out, we integrated (4.3) about one and two complex conjugate pairs of 
singularities around contours of the C, and C, type, respectively, shown in figure 1. 
In the integrable case, A = B, the solutions always returned to their starting values 
after a number of turns N ( l ) ,  which increased linearly with the length I of the vertical 
side of the contours, as seen in figure 5 .  The accuracy with which the initial values of 
the solution are repeated varies within 10-'o-10-'4 (see appendix 1 for more details). 

OLD 064 080 100 120 140 160 OLO 060 080 100 120 1LO 
Vertirol path side length 111 Vertical path ride length li 1 

Figure 5. ( 0 )  Same as figure 4(0) for the non-integrable soft billiard potential (4.1). with 
A = I ,  B = 1.1, E =IO. ( b )  Same as figure 4 ( b )  for the non-integrable soft billiards system 
w i t h A = l , B = l . O 1 , E = 1 0 .  

An interesting thing happened, however, when we performed the same integrations 
for A + B: as in the non-integrable case of the Calogero-Moser system of section 3, 
around two complex conjugate pairs of singularities, the solutions came close to their 
starting values, with an accuracy that became smaller and smaller as B differed more 
and more from A !  This suggests again that these are not repetitions at all, but rather 
near returns of the solutions to their initial conditions, which occur after a number of 
turns N ( l )  that increases linearly with 1, just as in the case of the exact refurns of the 
integrable system shown in figure 5 .  On the other hand, turning around one pair of 
singularities, we always found exact returns, as in the Calogero-Moser case. 

This evidence shows that, in non-integrable Hamiltonian systems with only algebraic 
singularities, the iss predicted by Ziglin's theorem [6, 121 can be found, when integrating 
around suitably large contours in the complex r-plane. The branches of the multitude 
of singularities encountered on different sheets apparently become connected in such 
a way that the solutions are no longer allowed to repeat after the number of turns 
expected from the integrable case. 

Of course, whether what we have just described is evidence of true ISS cannot be 
decided by numerical computations alone. Although we have observed that the 
(absolute) differences of the solutions from their initial values keep growing steadily 
by nearly the same amounts for several hundreds of turns, we cannot be sure that this 
trend will continue and these differences will not become zero (after a few more 
hundreds of turns), leading eventually to finitely sheeted solutions. 
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Concluding this section, we wish to add that entirely similar results as described 

(i) potential (1.2) with ( 1 . 3 ~ 1 ,  which is smooth for all real ( x , y ) ;  
(ii) potential (1.2), with (1.3b), bur with k <  0, which describes unbounded motion 

in the region x 2 + y ' < l .  
In  system (ii), solutions are different than in the k > O  case and the equations of 

motion (4.3) had to be numerically integrated anew to observe iss for A = B and obtain 
figures very simiiar io figure 5 ,  found for i>  0. 

On the other hand, for system (i), no new integration is needed since it can be 
directly derived from the potential (1.2) with (1.3b), k > 0, by the canonical transforma- 
tion of variables: 

above are found in two other potentials of this class: 

x = i x '  = i y '  px=-ip: pY = -ipL f = -f' H = -H' (4.7) 
... I-^_^ U U ,  ~ - -  .L^ ".....:,L--:--- -.-.I.- ....- " ..-. c.,---,.. ... !&l. I "  -, .I_^ --,... :--" 
W'IGIC n, I2 arc ULG rla_IIIIIIuLLla,,b U, LllC L W U  >ys,=,,,>. kAcar,y, W l U l  I*.,, L l l C  SUIUIIULIJ 

of one system are mapped to those of the other, at the same parameter values A, B, 
in such a way that their corresponding analytical properties in  complex f are identical. 

5. The Grammaticos-Dorizzi-Ramani potential 

We now turn to a Hamiltonian system of two degrees of freedom: 

H ( x ,  Y.  pX, P,) = %P:+P:)+ V ( x ,  Y )  (5.1) 

with 

V ( x ,  y ) = gx4+ &'y2 + y4+ Ax (5 .2)  

whose singularity analysis was first carried out by Grammaticos et a1 [6, 111. This 
potential, for A = 0, near a singularity t = I, has solutions of the following type: 

m m 

(ii) x = 2 i  r - '+ 1 c , ~ "  y = d r ' +  1 dnrn (5.4) 
n = o  "-4 

r = t - t ,  where d, f and h are arbitrary constants. It possesses the Painlevt property 
in the variables X = x', Y = y ,  since the apparent square root singularities in ( 5 . 5 )  are 
trivially removed by squaring x. The second integral, in the A = 0 case, is [ 111 

C =p~+(24x'y'+4x4)p:- 1 6 ~ ' y p , p , + 4 x ~ p ~ + 4 ~ ~ +  16x6y'+ 16x4y4. ( 5 . 6 )  

Remarkably enough, when A fi) in (5.2j. the oniy quaiitative change in (5.3)-(5.5) 
is the appearance, in the expansions for x in ( 5 . 9 ,  of all the powers of r"' (hence 
integer powers of .r also). This precludes the simple removal of half-integer powers 
by squaring, eliminates the integral (5.6) and renders the problem non-integrable, as 
shown by the presence of large-scale chaotic regions on its surfaces of section [15]. 
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Furthermore, no logarithmic terms arise in that case, as all compatibility conditions 
associated with the free constants in the series (5.3)-(5.5) are satisfied for all A. Thus 
(S .2 ) ,  with A # 0, is another example of a non-integrable potential, whose 'worst' 
singularities are (locally) of the square root type. Its only distinctive feature is the fact 
that, unlike the potentials of sections 3 and 4, these singularities are infinite (i.e. x, y 
diverges at finite t = t*), as they are produced by a potential (5.2), which is an entire 
function of x and y. 

We have also integrated the equations of motion of this system numerically in the 
complex r-plane and have found here the same results as in the previous sections: 
evaluating x, y, p x ,  p," around contours enclosing one complex conjugate pair of 
singularities (of the primary sheet) we find finitely sheeted solutions, while around 
two such pairs we found' again evidence of ISS. 

As before, the solutions exhibited near returns aftera number of turns that increased 
linearly with the vertical side of the contours. Note in figure 6 the interesting pattern 
of singularities encountered on the different sheets. The appearance of clustering is, 
of course, illusory since all these singularities are shown, in that figure, projected on 
the same sheet. 

0.80, 

1 -0.80 

-1.20 
0 0.50 1.00 1.50 2.00 

Re It1 

Figure 6. Singularity patterns for Hamiltonian (5 .1 )  With (5.2) in the non-integrable case 
A = 0.02, observed when integrating around a Contour C, enclosing two singularity pairs. 

6. The weak-Painleve potentials (1,5) 

We finally turn to the analysis of the sheet structure of the solutions of an interesting 
class of completely integrable systems with only algebraic singularities: the weak- 
PainlevC potentials [6, 161, whose finite branching cannot be removed by simple 
coordinate transformations [17]. 
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In particular, we will concentrate here on two examples of a family of such potentials 

x2kY*-2k 
[ “ / 2 1  (n-k)! 
L=O k ! ( n - 2 k ) !  

V . ( x , y ) =  2 - 2 k  

(where [. . .] denotes the integer part) namely the n = 5 and n = 6 cases, 

v, = y5 + y”2 + &yx* 

v, = y6+2x2y4 + ix4y2+&x6 
(6.2) 

(6.3) 
examine the analytic structure of their solutions and compare the results with what 
we have found in previous sections. 

Starting, for example, with (6.2),  one notes from its equations of motion (with 
v5 -+ - V5) 

x = 2xy3+:yx3 ji= 5y4+3x2y’+&x4 (6.4) 
that, at leading order, the behaviour of the solution near a singularity at f = f* belongs 
to one of the following types: 

(i) x, y =  ( I -  t*)-2’3 as t +  t* ( 6 5 1 )  

(ii) y=( t - f* ) -2 ’3  x =  ( t - t * )”  with p = -f or :. (6.5b) 

Moreover, this system has the second integral of motion [6, I S ]  

(6.6) 
2 1 2 4  3 4 2  I 6  I = -ypx+xpxp,-,x y + g x  y -six . 

Note that the rational powers in the expansions of x, y to higher orders in (6.5) cannot 
be trivially transformed away by taking the cubic powers of x, y, as these expansions 
contain, in general, all powers of ( i  - I*)’/’. 

In fact, all potentials (6.1) have a second integral quadratic in the velocities, are 
separable in parabolic coordinates but d o  not belong to the class of potentials found 
by Whittaker [16] .  It is known, however, that it is quite difficult to obtain explicit 
solutions of (6.4) as functions of f. 

Now potential (6.2) has no local minimum about which the particle can execute 
bounded oscillations, hence no periodic array of singularities is found on the primary 
sheet in this case. There is, however, one pair of singularities on the primary sheet. 

Integrating the equations of motion (6 .4 )  numerically in the complex I-plane around 
this pair of singularities, along contours with vertical side I, we found that the solutions 
exactly returned to their starting values, after a number of turns N which increases 
linearly with 1. 

Finally, we studied the weak-Painlev6 potential V6, which does support real, 
bounded oscillations about its minimum at x = y = 0 .  Integrating its equations of motion 

around singularities, at which the solutions diverge like ( f  - f * ) - ” 2  and ( f  - fJ1l4, we 
always found finitely sheeted solutions and linear growth of the number of turns N(1)  
(at which the solutions repeat) as a function of the ‘height’ of the contours I ,  around 
one complex conjugate pair of singularities (see figure 7 ( a ) ) .  

Interestingly enough, however, around two such singularity pairs N ( I )  becomes a 
piecewise constant function of I ,  as seen in figure 7 ( b ) .  Whether these results are 
generally valid for the whole class of weak-Painlevt potentials (6 .1)  is currently a 
matter under investigation. 
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Figure 7. Plot of the number of turns N needed to (exactly) return to the original Riemann 
sheet versus the length of the vertical side of contours (a )  around one pair and ( b )  around 
two pairs of singularitiei for the weak-Painlev6 potential (6.3).  

E. Discussion and conclusion 

In recent years, the connection between (non-)integrability of dynamical systems and 
the analytic structure of their solutions in the complex 1-plane has been the subject 
of intense investigation. As expected, the literature on integrable systems (whose 
solutions have onlypoles in complex I) grew disproportionately at first, yielding many 
new integrable examples as well as  a number of rigorous results, on N-degree of 
freedom Hamiltonian systems, using the powerful techniques of algebraic geometry 

On the other hand, at the forefront of research on non-integrable systems, progress 
has been slower. The presence of ISS in such systems was noted early enough, when 
it was observed that logarithmic singularities typically occurred in perturbations of 
integrable systems [20]. However, the necessity of iss for non-integrability was 
rigorously established somewhat later, with the work of Ziglin [6,12] and Yoshida 
16,211 on Hamiltonian systems with infinitely branched singularities. Furthermore, 
such singularities have been seen to cluster on the same sheet in the complex t-plane 
[4-71, leading some to wonder whether this is also a necessary feature of non- 
integrability. 

In this paper, we have presented arguments and numerical evidence demonstrating 
that infinite branching and clustering of singularities are not necessary for non-integra- 
hility. On the other hand, we found that ISS are necessary, as infinitely many sheets 
always appear to exist, in non-integrable systems with only algebraic singularities, 
when the equations of motion are integrated along suitably large contours in the 
complex t-plane. 

A very important class of dynamical systems with only algebraic (typically square 
root) singularities in complex time are those whose singularities are finite, i.e. occur 
at finite values of their configuration coordinates x, y, cf (1 .1)  with (1.2). Near such 
values, the potential of the problem V ( x ,  y) - k ( f ( x ,  y))-* rises sharply to infinity and, 
in the limit of k -t 0, strongly resembles a model of hard billiards [22]. 

~ 9 1 .  
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One of the objectives of this research is to use singularity analysis, at the k +  0 
limit, to study the solutions of the physically interesting real billiards, using complex 
billiards, where collisions are viewed as square root singularities around which the 
solutions can be analytically continued in complex time [23]. Analysing the sheet 
structure of a hard billiard case, it may thus be possible to understand the behaviour 
of solutions of a large class of soft billiards (be they integrable or not) which have the 
same hard billiard limit. 

Finally, the results presented in this paper lead us to conjecture that dynamical 
systems possessing only algebraic singularities are integrable if and only if their 
solutions, around any finite-size contour in the complex t-plane, are always finitely 
sheeted. Evidence of ISS is often numerically obtained around short enough contours 
(in all our cases enclosing two complex conjugate pairs was sufficient), to provide a 
practical criterion for non-integrability, especially for systems whose real time motion 
appears very regular on surfaces of section (as is the case with the soft billiards of 
section 4 for x 2 + y 2 < 1 ) .  

Of course this criterion becomes more useful near integrable cases where the trend 
towards ISS can be more easily detected along relatively short integration paths in the 
complex 1-plane. A more important point, however, remains the need for rigorous 
justification of the above results, which is currently under investigation on perturbations 
of some special integrable cases, where the analytic structure is explicitly known (see 
appendix 2). 
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Appendix 1. Numerical methods and results 

In this appendix, we provide further details concerning the numerical results presented 
in this paper. These results were obtained by integrating the equations of motion of 
each problem along piecewise linear (closed or  open) contours in the complex t-plane, 
using the ATOMFT package. This package, originally developed by Chang and Corliss 
[13] as ATOMCC, was further improved and successfully employed in recent years 
to exhibit in a most graphic way the fascinatingly complicated singularity patterns of 
non-integrable systems [4-81. 

As is well known, this numerical package is designed to solve a system of ordinary 
differential equations in the complex plane of their independent variable 1, by expanding 
the solutions in Taylor series and determining, at every step, its circle of convergence 
in the r-plane. The intersection points of all these circles provide, of course, the 
locations of singularities 1 = f,, like the ones shown in figures 1, 4 and 6. 

The variable step size f + 1 + h of the integration procedure is internally determined 
depending on the distance of 1 from the nearest I t .  The number of terms in the Taylor 
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series may also be varied (we have taken u p  to 140, in some cases) in order to specify, 
as accurately as possible, the locafion of the nearesf f* and the power a, in the leading 
order ( f ~ f * ) ~  (a<O),  by which the position (or momentum) variables diverge at 
f = f*. These two numbers are generally obtained within 4-5 digit accuracy. 

An important point to remember is that the ATOMFT package provides, at every 
step, the location of the singularity nearest to its integration path, at that value of f. 

Thus, care must be taken in turning around a certain f* to distinguish between 
singularities lying on different sheets! In figures 4 and 6, for example, we marked by 
crosses ( x )  the singularities on the first (primary) sheet and by dots ( . )  all those 
appearing on the higher sheets. 

Our numerical integrations around contours of the type C,, C, (see figure 1) 
proceeded in the following way. Starting with initial conditions at the origin of the 
complex f-plane we integrated to the point P on the upper left-hand corner of our 
contours and recorded the value of the solutions there: 

&(P) = (xdp), YO(P), P+(P), P,(P)). (AI.1) 

We then started integrating around the contour (always in the clockwise direction) 
and recorded at P, after the ith turn, the values 

x,(~)=(x,(p),Y,(~),P,,(~),P,i(~)) i =  1,2, .  . . . (A1.2) 

To check whether we had returned to the original sheet we computed, after every turn, 

(A1.3) AXj( P) = Xc( P) - Xn( P) i = 1,2, .  . . 
and, in particular, the absolute differences of the x variable: 

IAxi(P)I Ix,(P)-xo(P)I i = 1,2,. . . . (A1.4) 

in  aii the integrabie cases studied in this paper, ihese difierences became zero 
(within the accuracy of our computations) i.e. 10-'4-10-'o, with the errors growing as 
the size of the contour (i.e. the height of the rectangles PP'= I in figure 1) increased 
further and further. For all integrable potentials (except the Calogero-Moser one) 
(A1.4) becomes zero, after a number of turns N that increases linearly with I (see 
sections 4-6 for more details). 

On ihe oiher hand, when A i  E and our poieniiais become non-iniegrabie, evidence 
of iss is observed in the following way. Computing the differences (see (A1.4)) for 
i = N, 2N, 3N, ,  . . we noted that they were no longer zero, but began to increase, after 
every N turns, by nearly the same amount, i.e. 

IAxxN(P)I k& k = I, 2, . . . . (AIS) 

,ne values 01 ox (an" muse of 8y, &tix, 8py of the coirespoiidiiig difieieiiiej of the 
variables y, px, py), of course, tend to zero in the integrable limit A +  B. 

It is important to note, however, that this evidence of iss was obtained around 
contours C4 containing two complex conjugate pairs of singularities. When we 
integrated around one pair we always found 1AxXN(P)I = 0, within the accuracy of our 
calculations. Furthermore, we verified all of these results by integrating around many 

energy integral. 
The presence of iss becomes more and more evident as B is changed further and 

further away from the case B = A .  In table 1, we list some typical results for the 
Calogero-Moser and soft billiard potentials, showing how solution differences grow, 

. " ~ -  .r c , . ~ .J  .L..- 

A..-. -..-" h..-A--A- -F+:-..-- ..h-..L:-- -..--..- n+;.--l n----c P n h x i t h n  .mA.+;nn nFthn 
CUlllVULJ IIUIIUISUJ U1 L11,1SD( C,LCC&,.,Lj vu, I I " I I . ~ . I C P I  C L L U I D ,  c.6. ", L L L C  *'...'.. I-&. -h L S . 1  
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Table 1. Typical results for Calogero-Moser and soft billiard potentials ( A =  I ,  1=0.6). 

lAxNl for 1.00001 1.0001 1.001 1.01 1.15 1.5 

Soft billiards 1.035X10-J 0.956xIO-' 0.883XlO-' 0.7689XlO-' 0.7098X10-' 

Calogera- 0 . 1 6 3 5 ~ I O - ~  0.1635x10" 0 . 1 6 3 7 ~  IO-' 0 . 1 6 5 6 ~ 1 0 ~ '  0.297x10-' 
MOSW 

as B grows, and how this trend to (or away from) finite-sheetedness can be used to 
single out parameter values at which a dynamical system with only algebraic sin- 
gularities is integrable. 

Appendix 2. An exactly solvable soft billiard problem 

As we noted in section 4 the soft billiard Hamiltonian 

k,A,B>O (A2.1) 
k H = i(x2+ 3') ++(Ax2+ By2) + 

(x2+ y2 - 1 ) 2  

is integrable for A = E, since it is separable in polar coordinates x = r cos 8, y = r sin 8, 
in terms of which the energy equation is 

1 d r 2  A J 2  k E I ( ; )  +yr2+g+-= (A2.2) 

whcre I = r2b =cans!. is !hp z n g ~ L r  momentum integra!, Separating r and 1 in (A2.2) 
and introducing the new variable 

(A2.3) 2 u = r  - 1  

we obtain after some manipulation 
U du 

l - to=*f  r (A2.4) 
",;/?E(u+ ! ) L . 2 - , q u +  !yt?2-J2r?2-2 .G(?1+ 1) 

which is out (4.4). 
Collecting terms in the denominator we may write the integral of (A2.4) in the form 

i "  U du 
t - t , = + -  

2&i 1.. Ju4+ &+pu2+  y~ + s (A2.5) 

with 

6 =-. 2k (A2.6) 
2 k  y = -  2E J2 p = 1 --+- 2E a =2--  

A A A  A A 

The integral in (A2.5) can now be expressed in terms of elliptic integrals of the first 
and third kind, 

rrinm -I.. 
U* 

(A2.7a) 
0 J ( i  - x 2 ) ( 1  - A ~ x ' )  

F(P,A)= J 

(A2.76) 
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depending on the location of its upper and lower limit, with respect to the roots of 
the polynomial in the denominator (see [ 14 ] ,  section 3.148). For example, 

la" J ( u  - a ) ( u -  b ) ( u  - c ) ( u  - d )  
U du 

for u > a > b > c > d , w i t h  

a - d ) ( u  - b )  a -c)(b - d )  

where U, U and all parameters a, b, c, d are real. 
Since it appears quite difficult, in general, to invert the integral (A2.4), obtain 

explicitly U = u ( t )  and study its sheet structure, we shall do that below in a special 
case in which the expression in the radical of (A2.4) and (A2.5) becomes a complete 
square, i.e. where 

Evaluating this integral one finds 

To achieve this reduction we require that p, ,  p2 satisfy 

* m p : + k p , + 2 k = O  

p,=+E;. 
E = A ( l + p i + P d  

J f J 2 E  - A ( l  -p :  - p;-4pipZ). 

To further simplify the algebra we choose A = 2/ k, 

i 2 p : + k p 2 + 2 k = 0  

k 
p,  = i-. 

P2 

hc (A2.10 

We now have two choices: 
(i) pIp2<0,  with the minus sign in (A2.111, and thus we have 

(A2.8) 

(A2.9) 

( A 2 . 1 0 ~ )  

(A2.10b) 

( A 2 . 1 0 ~ )  

(A2.10d) 

b) become 

( A 2 . 1 1 ~ )  

(A2.11 b) 

(A2.12) 

k + m  k - J k i + l 6 k  
P2= 4 P I  = 

2 2 k  
k 2  

J =-2+-+- 2 E = l + -  
k 



Non-integrable systems 3235 

(ii) p,p2>0,  with the plus sign in (A2.11a, b) ,  and thus we have 

- k + m  - k - m  
P2 = A PI = n 

2 k  
k 2' 

J 2  = 2 +-+- 2 
E = - 1 + -  

k 

(A2.13) 

Taking now k =  !, (.A2:!2) gives, i!! c.se ( i ) ,  

1 
J = -  (A2.14) J5 E = 3  

l+Jil 1 -.hi 
p*=- 4 P I  =- 4 

and, in case (ii), 

J = -  (A2.15) - l+iv 'Z -1 - i J i 3  
A' P2 = E = l  

4 P I  = 

Inserting p , ,  p2 from (A2.14) in (A2.9), for to = 0, and splitting real from imaginary 
parts we find for the imaginary part of a singularity f* = tR +if, (at which r2  = 1): 

1 +m 
tl = f [ ( 1 + .hi) In( 7) - ( 1 - m) In( ?)I. (A2.16) 

Integrating now numerically along some path, with initial conditions satisfying 
(A2.14), we found, in complete agreement with (A2.16), that no new singularities 
appear as one keeps turning around contours enclosing singularities of the primary 
sheet. 

On the other hand, in case (ii), with (A2.15). we similarly find a multirude of 
skgA!&ies !*, !y.xg 0" dg?:?.?! sheets, whose Imaginary parts satisfy 

(A2.17) 

in agreement with what finds integrating numerically equations of motion in the 
complex I-plane. 

1 I ,  = i- (cos-' $+ m n )  m=O,*1,*2, . . .  
2 m  
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